Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking.

نویسندگان

  • Bart A van Montfort
  • Gea K Schuurman-Wolters
  • Joyce Wind
  • Jaap Broos
  • George T Robillard
  • Bert Poolman
چکیده

A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subunit and amino acid interactions in the Escherichia coli mannitol permease: a functional complementation study of coexpressed mutant permease proteins.

Mannitol-specific enzyme II, or mannitol permease, of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system of Escherichia coli carries out the transport and phosphorylation of D-mannitol and is most active as a dimer in the membrane. We recently reported the importance of a glutamate residue at position 257 in the binding and transport of mannitol by this protein (C. Saracen...

متن کامل

Disulfide cross-linking studies of the transmembrane regions of the aspartate sensory receptor of Escherichia coli.

The Escherichia coli aspartate receptor, a dimer of identical subunits, has two transmembrane regions (TM1, residues 7-30; TM2, residues 189-212) of 24 residues each. To study the relative placement and orientation of the regions, cysteine residues were introduced individually into the center of each: at positions 17, 18, and 19 in TM1; and at positions 198, 199, 200, and 201 in TM2. Based on t...

متن کامل

Glucose permease of Escherichia coli. Purification of the IIGlc subunit and functional characterization of its oligomeric forms.

The membrane subunit (IIGlc) of the glucose permease has been purified from overproducing Escherichia coli. About 2 mg of pure protein was obtained from 10 g (wet weight) of cells. IIGlc of E. coli and Salmonella typhimurium are functionally indistinguishable. A small difference was revealed, however, by a monoclonal antibody which neutralizes glucose phosphorylation activity of IIGlc from S. t...

متن کامل

Domain complementation studies reveal residues critical for the activity of the mannitol permease from Escherichia coli.

This paper presents domain complementation studies in the mannitol transporter, EIImtl, from Escherichia coli. EIImtl is responsible for the transport and concomitant phosphorylation of mannitol over the cytoplasmic membrane. By using tryptophan-less EIImtl as a basis, each of the four phenylalanines located in the cytoplasmic loop between putative transmembrane helices II and III in the membra...

متن کامل

Helix packing in the lactose permease of Escherichia coli: localization of helix VI.

Plasmids encoding "split" lactose permease constructs with discontinuities in either the periplasmic loop between helices V and VI (N(5)/C(7)) or between helices VI and VII (N(6)/C(6)) were used to localize helix VI within the tertiary structure by site-directed thiol cross-linking. A total of 57 double-Cys pairs, with one Cys residue in helix VI and another in helix V or VIII, were studied wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 17  شماره 

صفحات  -

تاریخ انتشار 2002